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Asymptotic High-Frequency Modes of
Homogeneous Waveguide Structures with

Impedance Boundaries

ISMO V. LINDELL, MEMBER, IEEE

A bstract—Homogeneous wavegnides with both isotropic and anisotropic

impedance boundaries are considered and asymptotic high-freqnency mode

properties are systematically derived, Among the new resnlts are ortho-

gonality properties of the asymptotic HF fields, existence of self-duaf

solutions, construction of stationary functionafs, and an explicit formula for

the calculation of the asymptotic attenuation coefficient for the general

wavegnide.

I. INTRODUCTION

T HE PROBLEM of guided waves in structures of large

transverse dimensions has many applications, e.g., in

antenna feed systems and millimeter and submillimeter

wave engineering. A paper on HE ~~ modes in large wave-

guides was recently published [1]. The theory presented

was, however, mainly limited to special geometries and

loaded with unnecessary assumptions, which has prompted

this author to attempt of a more systematic theory of

asymptotic modes.

In the present study, the fields are derived through

Hertzian potentials as in conventional waveguide mode

analysis [2]. These potentials are expanded in asymptotic

series with respect to the inverse powers of the wavenum-

ber k and equations for the coefficients are obtained. The

basic is the Helmholtz equation for the two scalar potential

functions and the eigenvalue is related to the difference of’

the propagation factor and the free-space k value. The

basic problem is independent of the true impedance prop-

erties of the boundary, as was demonstrated in [1]. Proper-
ties of the basic solutions are considered, the mode fields

satisfy certain orthogonality conditions. Also, the modes
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are all degenerate. Two functional are presented that are

stationary for the solutions of the basic problem and give

the eigenvalue as the stationary value. The eigenvalues are

seen to be, real so that no attenuation is connected with the

basic problem.

Defining two dual transformations, we see that a dual

transformation of a basic solution is also a basic solution

of the asymptotic waveguide problem. The most natural

way, of defining and classifying the mode fields seems to

be in terms of two self-dual solutions of the basic problem,

because they both satisfy uncoupled boundary conditions.

The problem is, then, formulated in terms of one scalar

potential function only. A stationary functional is also

presented for the self-dual modes. These modes are cir-

cularly polarized everywhere, whence there is no need to

consider any special coordinate system in the transverse

plane. As an application, the circular cylindrical geometry

is analyzed for self-dual modes.

The attenuation is obtained in the next problem, which

applies the solution of the basic problem. An explicit

formula for the calculation of the attenuation coefficient is

given. This involves the boundary conditions and is consid-

ered separately for an isotropic and an anisotropic

boundary. As an example, corrugated surface is analyzed

and it is found that the attenuation is decreased if the

longitudinal impedance is decreased and “the transverse

impedance increased, which was demonstrated for special

geometries in [1],

H. THE WAVEGUIDE PROBLEM

The waveguide structure considered here (Fig. 1) is uni-

form in the z-coordinate and bounded with any closed

curve C in the transverse plane. Because of the transla-
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Fig. 1. The generaf waveguide with surface impedance Z..

tional invariance in z, all eigensolutions contain the z-

dependence in the form e ‘J~z. The medium inside the

curve C is assumed homogeneous and the boundary condi-

tions on C are the Leontovich impedance conditions with

either isotropic or anisotropic surface impedance. In the

latter case, Z, is a dyadic. The guide may have other

boundaries inside C, i.e., be multiply connected, and

C may move to the infinity, whence with Z, =T, the
free-space impedance, the radiation condition is satisfied

and open guides can be included in the analysis, e.g., the

Sommerfeld–Goubau line. The main approximation made

here is that the surface impedance is assumed independent

of the frequency. If Z,(w) can be written as an asymptotic

series in the inverse powers of k, this presents no problem

in the asymptotic approach, but for nonanalytic functions

(like the square root for good conductor surfaces) the case

is not so simple. We postpone this argument to be treated

in a further study and concentrate here on the basic theory.

A. The Hertzian Potentials

It is well known that the electromagnetic field in a

straight guide can be represented in terms of two scalar

functions, the Hertzian potentials z-(p), m(p) [2]:

E(r)= [nk~~(p)–jD Vn(p)+jkuX Vm(p)]e-Jflz (1)

v@r)=[uk?~(p) -jEV’nz(p) -jku X~n4’’)]e-J~z.

(2)

Here, u= u= is the axial unit vector, p is the position vector

in the transverse plane and k;= k 2—/32. The potential

functions satisfy the two-dimensional Hehnholtz equations

(v2+k2)(j)=0, onS. (3)

On the boundary curve C, the following scalar impedance

condition is assumed:

nxE= —z/Zxnx H. (4)

The anisotropic boundary will be treated in Section V.

Inserting (1) and (2) in (4) gives us the following boundary

conditions for the potentials. Here, n and t are unit vectors

normal and tangential to C

(kn. v

)()(
–ptv ~ =k, ‘jV/z, O

/3t. v kn. v m c O )( )Z~/jq : “

(5)

B. The Asymptotic Series Approach

We are interested in the guided modes as the frequency

is increased without limit, u+ w. To perform the asymp-

totic analysis we write every quantity dependent on the

frequency as a power series in the inverse powers of k,

which closely resembles the geometrical optics series

method [3]. The expansions are

~=~, /k+r2/k2+ . . . (6)

m=m,/k+m,/k2+ . . . (7)

P= L,k+& +&/k+ . “ . (8)

k:=-(~~l-l)k’-z~-l~ok

-( B:+2B-,P,)-2(PoP, +B-,P2)/k- “ ‘ “ . (9)

The terms w., m. with n< 1 must be zero, because, as we

see from (1), (2), otherwise the fields would grow with

increasing frequency without limit and this is excluded by

normalization requirements. Also, the terms ~~ with n< — 1

are zero for the same reason. The series are asymptotic, i.e.,

they may not converge as n+ co, but for a sufficient large k

a few terms will give a good approximation. The unknown

coefficients are solved from the equations which are ob-

tained by substituting (6) .-. (9) in (3), (5) and equating the

coefficients of every power of k. In this manner, we end up

with a system of equations with rising power n.

C. n= – 1 Equations

The Hehnholtz equations (3) imply

()(p:, -l) ;, =0 (lo)

which gives, assuming the Hertzian potential coefficients

nonzero,

~_,=*l (11)

or the asymptotic value of ~ is k as the frequency is

increased. It is well understood that the waves in oversized
waveguides travel much like waves in free space. Here we

limit the solution to waves going in the positive z-direction,

whence only the + sign in (11) is approved.

D. n= O Equations

From (3) we have now

po=o (12)

or there is no first-order correction to the value k of the

propagation factor. The series (8) and (9) can be simplified

to read

~=k+~, /k+~2/k2+ . . . (13)
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and

k~=–2~1–2&/k-~;/k2- . . . . (14)

More equations of the ordern=O are obtained from the

impedance boundary conditions (5)

n. VTI—t. Vml=O

}
or V7r1-u XVml =0.

n“Vml+t”v~l=O ‘

(15)

Denoting

@( P)= Vn(p)–uXVm(p) (16)

we thus have +1 = O at the boundary curve C. It is remarka-

ble that this condition does not involve the surface imped-

ance Z, if it is finite and nonzero. Hence, the basic poten-

tial coefficients r], m, do not depend on the surface

impedance, nor does /3,, the basic correction coefficient of

the propagation factor.

Also, (15) shows us that in general, both r, and m, are

nonzero, because they are coupled in the boundary condi-

tions. Thus, TE’ and TM= waves are not in general possi-

ble. TEZ waves are only possible if m, satisfies two

boundary conditions: v ml =0 on C or tlml /an =0 and

am, /at =0 at the same time. This is satisfied only for some

special geometries.

E. n= 1 Equations

From the Hehnholtz equations (3), the order 1 equations

for the Hertzian potentials can be written

(V2-2BJ(;, )=(). (17)

This is a pair of Helmholtz equations for the potentials and

the boundary conditions are (15). Denoting

h2=–2& (18)

we have the standard form (V 2 +h2)~1 =0 and (V 2 +

h2 )m, = 0. The solution depends only on the boundary

curve C (or curves C, if more than one are present), and

nothing else. Evidently, there exists an infinity of eigenvai-

ues and corresponding eigenvectors like for the well-known

Dirichlet and Neumann eigenvalue problems. In fact, t~s

can be deduced from the stationary functional to be given

in. the next section, applying the method described in [4].

More equations of the order n= 1 are obtained from the

boundary conditions. Since they involve the relations of n2,

m z, on ml, m,, they are postponed to a later section and the

basic potentials are considered first. -

III. THE BASIC ASYMPTOTIC FIELD

From (1) and (2) we may write expressions for the basic

asymptotic approximation of the electromagnetic field

J?30(r)= –j(vrl –uX Vm, ) exp (–jkz–j~lz/k)

= –j@l exp ( –jkz–j~lz/k) (19)

@IO(r)= –juX@l exp (–jkz–j~lz/k). (20)

These equations first show us the following interdepen-

/

Fig. 2.

f’

*
o hp k

Approximations of the dispersion curve ~ =8( k).

dence of the fields:

EO=–T)UXHO

IZO=+XEO. (21)

These are the well-known relations of the plane-wave fields.

That is, the fields in the asymptotic high-frequency mode

are TEM and orthogonal to each other, and the proportion

Of the magnitudes is q. Secondly, from the boundary

conditions (15), the basic asymptotic fields are seen to

satisfy

EO=O HO=O, on C. (22)

This condition was obtained in [1] through a local plane-

wave consideration, which is unnecessary.

Thirdly, the propagation constant equals ~ up to the

second order term

&k(l-h2/2k2)=k+ j?,/k. (23)

If k is large enough., (23) is an approximation of

~= (~, or h can be interpreted as the equivalent
cutoff wavenumber for the asymptotic mode. The disper-

sion curve /3= B(k) is approximated by the hyperbola

defined by h more closely than by the line /l=k. (See Fig.

2.) To obtain more complete view of the function /l(k), one

should try to solve for the real cutoff’ wavenumber k=}

and possibly expand the fields as an asymptotic series

around it and then try to match the two curves. The

low-frequency properties, however; are dependent on the

surface impedance Z,, whereas (23) is not.

A. Orthogonality of the Basic Modes

We are able to show that the solutions of (17) plus (15)

satisfy certain orthogonality properties. To be specific, it

will be proven that the mode vectors o’, corresponding to

the eigenvalues h;, i= 1,2,3 . . . satisfy

The domain of integration is the cross-sectional surface S,

bounded by the boundary curve C (or curves C.). In fact, -

substituting (16) in the integral (24) and invoking (15) we
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have after an application of the Gauss’ law:

J+’, ”@{ds=Jv ”(m;#<+m;uxoi)ds

-/( )r~v.+{—mju”vx+{ dS

— —
-’/( v~V2T{+m~V2m{)dS

=(hJ)2/(7r@~+m\ m{)@. (26)

The first term is symmetric in i and j whereas the last one

is not of a symmetric form. Because it must be symmetric,

we have

[(~’)2-(~’)2]J( ~:~/+~imi)ds=o (27)

If hi #t h~, the integral in (27) must vanish and, hence,

(24) is proven. The second orthogonality property (25) can

be derived as above, but with the i indexed terms con-

jugated. Instead of (26), (27) we have

Settingj= i in (28) shows us that (h’)2 is real and positive,
or h’ is a real quantity. Hence, from (29), the orthogonality

property (25) results.

Because /31 is a real quantity, it does not involve any

attenuation of the basic mode. The earliest term with

attenuation is &, or the attenuation constant is asymptotic

to l/k2, a fact which was shown to be true for corrugated

waveguides in [1],

The mode vectors +j can be taken to be real. In fact, if

the potentials ~~, mt are complex, from (15) and (17) we

see that both the real and the ima$nary parts of the

potentials are solutions to the same eigenvalue problem

with the same real eigenvalue ~ ~, whence from (16) we see

that both real and imaginary parts of @’l are solutions and

can be normalized real.

B. Functional for the Eigenvalues

It is not difficult to demonstrate that the following func-

tional Y( f, g) is stationary for the solutions of (17) with

boundary conditions (15), and gives ~(m~, m;) =(hi)2:

Y(f g)= ~(V~–~XVg)2dS,
J( f2 +g2) dS “

In fact, if the first variation of (30) is equated

have writing, (l= v f–uX v g

(30)

to zero, we

j[f (? n-0+8g(n.uXO)] dC
c

-~[df(v 0+~f)+8g(v. uXO+~g)] dS=O. (31)

Because this must be valid for any variations i$f, ~g, the

integrals must vanish independently. Choosing 8g = O and

Sf=I-Y(V. O+Jf )*, we end up in the equation v 2f+Jf= O
on S. Likewise, we obtain the same equation for g. On the

boundary C the condition becomes n” 0= O an n” u X 0= O
or together 6= O. Thus, f and g are solutions of (17), (15),

and J is the eigenvalue – 2~1. It must be noted that the

correct boundary conditions appear as natural boundary

conditions of the functional, whence the class of admissible

functions is the largest possible one.

With an effort comparable to the previous one, the

stationarity of the following functional can also be demon-

strated:

J(f g)= Jlvf–uxvgyds
>

/(1/12+lg12)ds “
(32)

The two functional (30), (32) are equivalent for real test

functions. For some complex functions, however, (30) might

fall in the indeterminate form 0/0, which is not the case

for (32).

IV. DUALITY TRANSFORMATIONS

The asymptotic modal fields satisfy certain interesting

properties with respect to duality transformations. Here we

restrict ourselves to the two duality transformations satisfy-

ing the following three requirements:

1) Maxwell’s equations must remain invariant;

2) the free space (intrinsic impedance q) transforms to

itself;

3) the involutory property is satisfied: the dual of the

dual field is the original field.

The two transformations satisfying these conditions are the

right-hand and left-hand duality transforms defined by

Ed= kjqH Hd = FjE/q. (33)

From here on, the double sign refers to these two transfor-

mations, the upper one to the left-hand and the lower one

to the right-hand transformation. The names arise from the

self-dual polarizations, as will be elucidated in Section

IV-A.

Applying the transformations to the asymptotic mode

fields (19), (20), leaves us with

E:= ~ju X EO (34)

H/=kjuXHo. (35)

That is, the dual fields are the original fields rotated 90°

around the u-axis and phase-shifted by 90°. Writing the

fields in terms of the Hertzian potentials gives us the

corresponding transformations for the potentials

From (15), (17) it is seen that the dual potentials satisfy

exactly the same equations as the original potentials, whence

we may state that the dual fields are also asymptotic

solutions to the same waveguide problem with the same

eigenvalue as the original field. If the original solution is a
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real field EO, HO with perpendicular electric and magnetic

fields, the dual solutions are both multiples of another real

field E:, II{, in whose field pattern the electric and mag-

netic field lines appear interchanged. Thus, every eigen-

value of the problem (15), (17) is degenerate.

A. The Self-Dual Solutions

Applying the duality transformation, we are able to

construct solutions to the eigenvalue problem that do not

prefer any coordinate system in the transverse plane, These

are the self-dual solutions corresponding to the two duality
Fig. 3. The circular cylindrical waveguide.

transformations. Self-dual fields are fields that remain in-

variant in the transformations, or than the wavelength (Fig. 3). Looking for self-dual solu-

E;=;(EOAjUXEO) (37) tions, we start from (40), (41). A finite solution of (40) is

H:=*(HO*JJXHO). (38) (44)

These are circularly polarized fields, i.e., they satisfy Substituting this in (41), we obtain two possible sets of

E;. EO* = O, Ho&. HO*= O, and were known to eti-st in cir- solutions. Either we have

cular cylindrical guides, [5]. lt is not difficult to see that the

field Eo+, Ho+ is circularly polarized in the left-hand sense ha J~(ha)~jrs Jfl(ha)=Oand B*=O (45)

and EO–, 110– in the right-hand sense with respect to the or

direction of propagation u.

The existence of these self-dual solutions for the asymp-
ha J;(ha)Ajn Jn(ha)=Oandxl*=O. (46)

totic waveguide problem can be applied to simplify the The transcendental equation in (45) can also be written
Hertzian potential problem. In fact, instead of looking for

ha JnT1(ha)=O. (47)
ml, m ~, we may search for ml+ or ml– defined by

h= O leads to a static mode, with rl satisfying the Laplace
~,~=~(rl=jml ) equation and because the fields vanish on the boundaries,

+_lml -Z(nzl~jnl)=~.jr~. (39) the fields vanish everywhere and this case is noninteresting.

The self-dual potentials are solutions to the following
Hence, only the zeros of J.+, and Jn_, give the possible

equations:
values for the eigenvalues: h n =pn~ 1/a, if p is the zero for

the Bessel function.

(V2+h2)n~=0, onS (40)

n.VT1&kjt.VT1*=O, on C. (41)

It is important to note that in the boundary condition (41)

the two potentials are not coupled as in (15). So, the

self-dual problem is reduced to solving one, scalar function

only.

From (40), (41) it can be seen that the two self-dual

solutions are simply related. In fact, we could define

or they are complex conjugates of each other. So, there is

no need to calculate both potentials.

The functional (32) can be written for one scalar func-

tion only, giving the stationary value for the solutions of

(40), (41)

The general solutions with the eigenvalue pm /a can be

written as

~&=A~Jm_l(pmp/a)e=~f~-l)*

+~;J~+l(pmp/a)e*’(M+’)+. (48)

Because the most general solution is a linear combination

of these potentials, it is seen that in general, there is, a

fourfold degeneracy in the solution of the asymptotic fields

of a circular cylindrical guide. For m = O this is reduced to

two, because the terms in (48) are multiples of each other

as J_, = —.lI. The electric field is written from (19) in the

form

Eo~ = –j(I*juXI). V nl~ (49)

if 1 denotes the unit dyadic. Substituting (48) in (49) we

have

~.(f)=J(lvf12*ju.vf*xvf)ds
(43) E~i = ~j(pm/a)(up ‘ju~)

j~2dS .

These two functional give the same stationary value h 2 for
.J~(p~p/a)e *’@(A~e ‘jm* –B~e ‘~mo)

the two signs corresponding to the potentials f =m *. = ~j( pm/a)(ux ‘juy)

B. Circular Cylindrical Waveguide .J~(p~p/a)(A2 “m+ –BZe *jm+). (50)

As a simple application of the theory we consider the This field is obviously circularly polarized, as predicted.

circular cylindrical structure with radius a much larger The basic asymptotic mode is obtained for the lowest
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eigenvalue h, which is h =2.4/a for m = O. From (50) it is

seen that as a linear combination of the self-dual solutions

we may write for the lowest mode

Em =AoJO(2.405p/a) (51)

with a unit vector v transversal to u. The field is then

polarized in one constant’ direction everywhere in the wave-

guide, as was also obtained in [6].

For the general case, m # O, the field can be written,

instead of four self-dual fields, with four fields with con-

stant linear polarizations

+C;Uye~mO+C;Uye-jmO]Jm(~). (5’2)

V. ATTENUATION IN WAVEGUIDES

The attenuation is obtained from the next asymptotic

equations. Writing the n = 2 Helmholtz equations

(7=24:1)(V2-2P,) m (53)

and the n = 1 boundary conditions

(n.v
t-v -;.$)(:2)=W’1(’5 Z:,,)(J)

(54)

we are able to solve for the unknown coefficient &. The

formula can be written in abstract form writing ~ for the

potential pair (T, m), whence (53) reads Lf2 = 2& fl and

(54) Bf2 = 2j~l i14f1. Here, L, B, and M are matrix opera-

tors. From (26) the following Green’s formula can be

derived:

(f, Lg)-(f, Bg)b=(Lf, g)-(Bf, g)b (55)

if the inner products (.,.), (.,. )~ are integrals over the

surface S and the boundary curve C, respectively. Thus,

the operator pair L, B is self adjoint with respect to these

inner products.

Substituting f~ for f and fz for g and noting that Lf~ = O
and Bf~ = O, we can solve for P2

=jp, +[(~/z.)lmi12+(z,/v)[m,12]dC

~(lfld’+lm,l’)ds “
(56)

If the basic problem ~1, ml, m ~is solved, from (56) the next

coefficient of P can be calculated.

The attenuation coefficient is defined as a =

– Im (P2 )/k’. It is seen at once that if Z, is pure imagin-

ary, we have a = O, or the waveguide is lossless to the

approximation. f12, then, presents just a correction to the

propagation coefficient. For the basic mode in the cylindri-

cal guide (56) can be tested, and an expression equivalent

to the equation (34) in [1] is obtained.

The potential coefficients n2, m2 are obtained by solving

the deterministic problem (53), (54). The result is not

unique, because a multiple of ml, m, can be added to the

solution. To obtain uniqueness, the solution ~2 can be

required to be orthogonal to the solution fl, or ( f2, fl ) = O
without any loss of generality, because the final solution to

the potential problem (the asymptotic series) can be nor-

malized.

A. Se~-Dual Modes

For the self-dual modes, the formula (56) is simplified a

little. From (39) we have m ~ = ~jnl~ and applying (42)

()
$1 Ir,+2dC

~~=–j~, ++.2! (57)
s ‘v 2(lw1+12dS “

For the self-dual modes the attenuation factors are the

same. This is not valid for the general anisotropic boundary,

however.

From (57) it is easy to see that the imaginary part of P2

is minimum for Z, = T, if the imaginary part of Z, is zero.

But if Im ( Z.) #O, then the minimum is attained at Re( Z, )

= O. For good conductors, Re(Z$ ) = Im(Z~ ) and the

minimum is seen to exist at Re ( Z, ) = q/fi.

For the self-dual modes, some conclusions about the

potentials can be made if the waveguide is lossless. Namely,

if Z, is imaginary, the operator jll is real and because L
and B are real operators, from (53), (54) we see that ml, ml

is a solution with the same & as n2, m‘. In this case, there

is the following dependence between the self-dual solu-

tions:

m; =(T; )* m; =(m~)*. (58)

B. Anisotropic Boundary

We consider boundary conditions more general than (4),

i.e., conditions of the form

nxE=z,. H (59)

where Z, is the surface impedance dyadic. It is a two-

dimensional dyadic, i.e., orthogonal to n: n. Z, = Z,. n = O
and can be written in the form

z,= Zrttt + Zrztu + Zzlur + Zzzuu. (60)

Denoting det Z, = Z,ZZZ, – Z,z Z=,, we may write (59) also

as follows:

(:)=-+(2‘detl!wi)
(61)

For Hertzian potentials this takes on the form

which obviously generalizes the condition (5).

The basic asymptotic quantities, /31, T1, m,, are not

affected by the anisotropy, but the formula for &, (56), is

changed because the operator &f is changed. Hence, the
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Fig. 4. Hefical corrugations onthewaveguide surface.

more general form of (56) can be written as follows:

1093

If Z1 = Zz this reduces to (57). If Z1 and Z2 are real, e.g.,

lossy tuned corrugations, it is not difficult to find out that

if Z1>Z2, thesmallest attenuation isobtained fora=~/2,

which corresponds to the conventional transversal corruga-

tions. The maximum attenuation is obtained for a = O, or

longitudinal corrugations.

For transverse corrugations, (66) reads

“=-’’(%+?):;;’67)
and it is seen that to have a small attenuation, the corruga-

tions must be tuned to give Zrl the largest possible value.

(63)

For the self-dual modes satisfying (39) and (42) we have

instead of (57)

(64)

From this we see that unless Z,, + 2=1= O, the two self-

dual modes have /3~ # f12-. For a reciprocal surface

material we always have a symmetric dyadic Z,, whence

only for a diagonal Z, (i.e., with eigenvectors along u and

t), the propagation coefficients have the same value. This is

satisfied for some boundary materials, e.g., for a corru-

gated surface material. More general surface impedance

dyadics can be realized with a layer of magnetized ferrite

material [7].

From (63) we can speculate how to obtain a small

attenuation. Obviously, the parameter Zff should be large

with respect to q. Denoting q/Zil =p, a small parameter,

the impedance parameters Z,= and ZZf should be of the

order 0(1) and ZZZ of the order 0(p), in order that the

attenuation factor be 0(p). Interpreted from the equation

(59), this implies the two conditions: t-H and t-E must

both be of the order 0(p), or they must be small. This is

well approximated by the corrugated surface.

C. Corrugated Waveguide

We consider the general corrugated waveguide with cor-

rugations directed helically with an angle a to the axis u.
(See Fig. 4.) In the local frame, we can write

z. =Zlu,ul +z##J2

()(U1 _

)( )

cos a sin a u
U2 — —sinacosa t “

(65)

Because det Z, = Z1Z2, (64) can be written in the form

q2+Z1Z2tijq( Zz-Z1)sin2a
$$r~12dC

fl~ = –j~,
q(Z, sin2a+ Z2COS2a) “ 2/l~i+12dS

VI. CONCLUSION

Asymptotic analysis was applied to the problem of wave

propagation in large waveguides with impedance

boundaries. The purpose was to expand the classical wave-

guide analysis in this direction and no claim of complete-

ness in solving problems arising in practical oversized

waveguides was made. To proceed in this field, one has to

take into account the nondeterrninistic defects of the wave-

guide boundary, for example.
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