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Asymptotic High-Frequency Modes of
Homogeneous Waveguide Structures with
Impedance Boundaries

ISMO V. LINDELL, MEMBER, IEEE

A bstract—Homogeneous waveguides with both isotropic and anisotropic
impedance boundaries are considered and asymptotic high-frequency mode
properties are systematically derived. Among the new results are ortho-
gonality properties of the asymptotic HF fields, existence of self-dual
solutions, construction of stationary functionals, and an explicit formula for
the calculation of the asymptotic attenuation coefficient for the general
waveguide.

1. INTRODUCTION

HE PROBLEM of guided waves in structures of large

transverse dimensions has many applications, e.g., in
antenna feed systems and millimeter and submillimeter
wave engineering. A paper on HE,, modes in large wave-
guides was recently published [1]. The theory presented
was, however, mainly limited to special geometries and
loaded with unnecessary assumptions, which has prompted
this author to attempt of a more systematic theory of
asymptotic modes.

In the present study, the fields are derived through
Hertzian potentials as in conventional waveguide mode
analysis [2]. These potentials are expanded in asymptotic
series with respect to the inverse powers of the wavenum-
ber k and equations for the coefficients are obtained. The
basic is the Helmholtz equation for the two scalar potential
functions and the eigenvalue is related to the difference of’
the propagation factor and the free-space k value. The
basic problem is independent of the true impedance prop-
erties of the boundary, as was demonstrated in [1]. Proper-
ties of the basic solutions are considered, the mode fields
satisfy certain orthogonality conditions. Also, the modes
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are all degenerate. Two functionals are presented that are
stationary for the solutions of the basic problem and give
the eigenvalue as the stationary value. The eigenvalues are
seen to be.real so that no attenuation is connected with the
basic problem.

Defining two dual transformations, we see that a dual
transformation of a basic solution is also a basic solution
of the asymptotic waveguide problem. The most natural
way, of defining and classifying the mode fields seems to
be in terms of two self-dual solutions of the basic problem,
because they both satisfy uncoupled boundary conditions.
The problem is, then, formulated in terms of one scalar
potential function only. A stationary functional is also
presented for the self-dual modes. These modes are cir-
cularly polarized everywhere, whence there is no need to
consider any special coordinate system in the transverse
plane. As an application, the circular cylindrical geometry
is analyzed for self-dual modes.

The attenuation is obtained in the next problem, which
applies the solution of the basic problem. An explicit
formula for the calculation of the attenuation coefficient is
given. This involves the boundary conditions and is consid-
ered separately for an isotropic and an anisotropic
boundary. As an example, corrugated surface is analyzed
and it is found that the attenuation is decreased if the
longitudinal impedance is decreased and the transverse
impedance increased, which was demonstrated for special
geometries in [1].

II.

The waveguide structure considered here (Fig. 1) is uni-
form in the z-coordinate and bounded with any closed
curve C in the transverse plane. Because of the transla-
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Fig. 1. The general waveguide with surface impedance Z,.

tional invariance in z, all eigensolutions contain the z-
dependence in the form e /%2, The medium inside the
curve C is assumed homogeneous and the boundary condi-
tions on C are the Leontovich impedance conditions with
either isotropic or anisotropic surface impedance. In the
latter case, Z, is a dyadic. The guide may have other
boundaries inside C, i.e., be multiply connected, and
C may move to the infinity, whence with Z ,—1n, the
free-space impedance, the radiation condition is satisfied
and open guides can be included in the analysis, e.g., the
Sommerfeld-~Goubau line. The main approximation made
here is that the surface impedance is assumed independent
of the frequency. If Z(w) can be written as an asymptotic
series in the inverse powers of k, this presents no problem
in the asymptotic approach, but for nonanalytic functions
(like the square root for good conductor surfaces) the case
is not so simple. We postpone this argument to be treated
in a further study and concentrate here on the basic theory.

A. The Hertzian Potentials

It is well known that the electromagnetic field in a
straight guide can be represented in terms of two scalar
functions, the Hertzian potentials #(p), m(p) [2]:

E(r)=[ukin(p)~jB v n(p)+jkux v m(p)]e
nH(r)=[uk?m(p)—j8 v m(p)—jkux v =(p)]e #-.

(1)

)
Here, u=u, is the axial unit vector, p is the position vector
in the transverse plane and k2=k>— B2 The potential
functions satisfy the two-dimensional Helmholtz equations

(v2+k2)( 1) =0, (3)
On the boundary curve C, the following scalar impedance

condition is assumed:
nXE=—2ZnXnXH.

onS.

(4)

The anisotropic boundary will be treated in Section V.
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Inserting (1) and (2) in (4) gives us the following boundary
conditions for the potentials. Here, n and ¢ are unit vectors
normal and tangential to C

—pt T 2 —J Zs 0 T
frt,-z)(m):kc( ﬁ(’)/ Zs/j»,,)(m)'
(5)

kn-<
Bt-v

B. The Asymptotic Series Approach

We are interested in the guided modes as the frequency
is mcreased without limit, w— 0. To perform the asymp-
totic analysis we write every quantity dependent on the
frequency as a power series in the inverse powers of k,
which closely resembles the geometrical optics series
method [3]. The expansions are

7r=7r1/k+w2/k2+
m=m1/k+m2/k2+
B=B_k+By+B/k+ -
k2=— (B2, —1)k*—2B_,Bok
— (B3 +2B_18:) —2(BoBi+B_1B) k= -+ (9)

The terms 7,, m,, with n<<1 must be zero, because, as we
see from (1), (2), otherwise the fields would grow with
increasing frequency without limit and this is excluded by
normalization requirements. Also, the terms 8, with n<< —1
are zero for the same reason. The series are asymptotic, i.e.,
they may not converge as n— oo, but for a sufficient large k
a few terms will give a good approximation. The unknown
coefficients are solved from the equations which are ob-
tained by substituting (6) - - - (9) in (3), (5) and equating the
coefficients of every power of k. In this manner, we end up
with a system of equations with rising power n.

(6)
(7)
(8)

C. n=—1 Equations
The Helmholtz equations (3) imply

(B2 =1){ ) =0 (10)

which gives, assuming the Hertzian potential coefficients
nonzero,

B_,==1 (11)

or the asymptotic value of B8 is k as the frequency is
increased. It is well understood that the waves in oversized
waveguides travel much like waves in free space. Here we
limit the solution to waves going in the positive z-direction,
whence only the + sign in (11) is approved.

D. n=0 Equations
From (3) we have now
By =0 (12)

or there is no first-order correction to the value k of the
propagation factor. The series (8) and (9) can be simplified
to read

B=k+B,/k+By/k*+ - (13)
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and
k2=—28,—2B, /k—Bi/k*— (14)

More equations of the order n=0 are obtained from the
impedance boundary conditions (5)

"‘VTfl_t'le :0

, or —uX =0.
n'le-*‘t-VWl:O} Va—uXvVm

(15)
Denoting

o(p)=va(p)—uxvm(p) (16)

we thus have ¢, =0 at the boundary curve C. It is remarka-
ble that this condition does not involve the surface imped-
ance Z_if it is finite and nonzero. Hence, the basic poten-
tial coefficients #;, m; do not depend on the surface
impedance, nor does 8,, the basic correction coefficient of
the propagation factor.

Also, (15) shows us that in general, both 7, and m, are
nonzero, because they are coupled in the boundary condi-
tions. Thus, TE* and TM?® waves are not in general possi-
ble. TE? waves are only possible if m, satisfies two
boundary conditions: v m,; =0 on C or 9m, /an =0 and
9m, /9r=0 at the same time. This is satisfied only for some
special geometries.

E. n=1 Equations

From the Helmholtz equations (3), the order 1 equations
for the Hertzian potentials can be written

(v2—231)(;‘1):0. (17)

This is a pair of Helmholtz equations for the potentials and
the boundary conditions are (15). Denoting

W =-28, (18)

we have the standard form (v?+h2)m =0 and (V*+
h*)m;=0. The solution depends only on the boundary
curve C (or curves C, if more than one are present), and
nothing else. Evidently, there exists an infinity of eigenval-
ues and corresponding eigenvectors like for the well-known
Dirichlet and Neumann eigenvalue problems. In fact, this
can be deduced from the stationary functional to be given
in-the next section, applying the method described in [4].

More equations of the order n=1 are obtained from the
boundary conditions. Since they involve the relations of =,,
m,, on 7, m,, they are postponed to a later section and the
basic potentials are considered first.

IIIL.

From (1) and (2) we may write expressions for the basic
asymptotic approximation of the electromagnetic field

Ey(r)=—j(vm "‘X'V m) exp (—jkz—jBz/k)
= —jo, exp (—jkz—jp,z/k) (19)
nH,(r)=—juX$, exp (—jkz—j,Blz/k). (20)

These equations first show us the following interdepen-
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Fig. 2. Approximations of the dispersion curve 8=pg(k).

S

dence of the fields:
Ey=—nuxXH,

1
HO = ;uxEo.

(21)
These are the well-known relations of the plane-wave fields.
That is, the fields in the asymptotic high-frequency mode
are TEM and orthogonal to each other, and the proportion
of the magnitudes is 7. Secondly, from the boundary
conditions (15), the basic asymptotic fields are seen to
satisfy ‘ '
E,=0 Hy=0, (22)
This condition was obtained in [1] through a local plane-
wave consideration, which is unnecessary.
Thirdly, the propagation constant equals k£ up to the
second order term
(23)

B=k(1—h*/2k*)=k+B, /k.

If k is large enough, (23) is an approximation of
B=y(k*—h?), or h can be interpreted as the equivalent
cutoff wavenumber for the asymptotic mode. The disper-
sion curve B=p(k) is approximated by the hyperbola
defined by 4 more closely than by the line B=k. (See Fig.
2.) To obtain more complete view of the function B(k), one
should try to solve for the real cutoff wavenumber k=p
and possibly expand the fields as an asymptotic series
around it and then try to match the two curves. The
low-frequency properties, however, are dependent on the
surface impedance Z_, whereas (23) is not.

on C.

A. Orthogonality of the Basic Modes

We are able to show that the solutions of (17) plus (15)
satisfy certain orthogonality properties. To be specific, it
will be proven that the mode vectors ¢, corresponding to

the eigenvalues #, i=1,2,3 - - - satisfy
fq,ll.q,{dS:O, for h' #=xh/, Bi#=B{ (24)
[#ir-oids=0,  forn #=h. (25)

The domain of integration is the cross-sectional surface S,
bounded by the boundary curve C (or curves C,). In fact,
substituting (16) in the integral (24) and invoking (15) we
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have after an application of the Gauss’ law:
f¢ﬁ-¢{ds=[v-(w;¢{+m;u><¢,{)ds
— [ (79 -¢{—min-v x{) ds
=~ [ (v n{+m\v>m{)ds

(26)

The first term is symmetric in i and j whereas the last one
is not of a symmetric form. Because it must be symmetric,
we have ‘

=(hf)2f('n'1’w{+m’lm{) ds.

[(r?= (Y] [ (imi +mimi) ds=0.  (27)

If h'#+=h’, the integral in (27) must vanish and, hence,
(24) is proven. The second orthogonality property (25) can
be derived as above, but with the /i indexed terms con-
jugated. Instead of (26), (27) we have

[&-olds=(n) [(wi'n{+mim{)ds  (28)

(Y= (0] [ (af'mf +miimi) ds=0.  (29)
Setting j=i in (28) shows us that (4')? is real and positive,
or /' is a real quantity. Hence, from (29), the orthogonality
property (25) results.

Because B, is a real quantity, it does not involve any
attenuation of the basic mode. The earliest term with
attenuation is §,, or the attenuation constant is asymptotic
to 1/k?, a fact which was shown to be true for corrugated
waveguides in [1].

The mode vectors ¢ can be taken to be real. In fact, if
the potentials |, m| are complex, from (15) and (17) we
see that both the real and the imaginary parts of the
potentials are solutions to the same eigenvalue problem
with the same real eigenvalue B8}, whence from (16) we see
that both real and imaginary parts of ¢, are solutions and
can be normalized real.

B. Functionals for the Eigenvalues
It is not difficult to demontrate that the following func-
tional J( f, g) is stationary for the solutions of (17) with
boundary conditions (15), and gives J(#], m})=(h')*:
(Vv f—uxXVv g)2 ds
J(f*+g*)as

I(f 8)= (30)

In fact, if the first variation of (30) is equated to zero, we
have writing 8=V f~uX vV g

fC[an-(H—Sg(n'uXO)] dc

—fs[af(v-o+1f)+5g(v-u><0+1g)] dS=0. (31)
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Because this must be valid for any variations 8f, dg, the
integrals must vanish independently. Choosing g=0 and
8f=a(Vv -0+Jf)*, we end up in the equation v *f+Jf=0
on §. Likewise, we obtain the same equation for g. On the
boundary C the condition becomes #-8=0 an n-uXx6=0
or together §=0. Thus, f and g are solutions of (17), (15),
and J is the eigenvalue —2p,. It must be noted that the
correct boundary conditions appear as natural boundary
conditions of the functional, whence the class of admissible
functions is the largest possible one.

With an effort comparable to the previous one, the
stationarity of the following functional can also be demon-
strated:

vV f—uXvgPds
S +1g*) dS

The two functionals (30), (32) are equivalent for real test
functions. For some complex functions, however, (30) might

fall in the indeterminate form 0/0, which is not the case
for (32).

i(f,g)=1 (32)

IV. DUALITY TRANSFORMATIONS

The asymptotic modal fields satisfy certain interesting
properties with respect to duality transformations. Here we
restrict ourselves to the two duality transformations satisfy-
ing the following three requirements:

1) Maxwell’s equations must remain invariant;

2) the free space (intrinsic impedance 7) transforms to
itself;

3) the involutory property is satisfied: the dual of the
dual field is the original field.

The two transformations satisfying these conditions are the
right-hand and left-hand duality transforms defined by

E‘==xjnH  H'=7jE/y. (33)

From here on, the double sign refers to these two transfor-
mations, the upper one to the left-hand and the lower one
to the right-hand transformation. The names arise from the
self-dual polarizations, as will be elucidated in Section
IV-A.

Applying the transformations to the asymptotic mode
fields (19), (20), leaves us with

Ef=~+juXE,

(34)
(35)
That is, the dual fields are the original fields rotated 90°
around the w-axis and phase-shifted by 90°. Writing the

fields in terms of the Hertzian potentials gives us the
corresponding transformations for the potentials

HE = +juxH,.

(36)

From (15), (17) it is seen that the dual potentials satisfy
exactly the same equations as the original potentials, whence
we may state that the dual fields are also asymptotic
solutions to the same waveguide problem with the same
eigenvalue as the original field. If the original solution is a

7l =%jm,  m{=Fjm.



LINDELL: MODES OF HOMOGENEOUS WAVEGUIDE STRUCTURES

real field E,, H, with perpendicular electric and magnetic
fields, the dual solutions are both multiples of another real
field Ej, H}, in whose field pattern the electric and mag-
netic field lines appear interchanged. Thus, every eigen-
value of the problem (15), (17) is degenerate.

A. The Self-Dual Solutions

Applying the duality transformation, we are able to
construct solutions to the eigenvalue problem that do not
prefer any coordinate system in the transverse plane. These
are the self-dual solutions corresponding to the two duality
transformations. Self-dual fields are fields that remain in-
variant in the transformations, or

EoI = E(Eo iquEO)
Hy" =3(H,*juXH,).

(37
(38)

These are circularly polarized fields, ie., they satisfy
Ey-Ey =0,H;"-H; =0, and were known to exist in cir-
cular cylindrical guides, [5]. It is not difficult to see that the
field E;", Hy" is circularly polarized in the left-hand sense
and E; , H; in the right-hand sense with respect to the
direction of propagation .

The existence of these self-dual solutions for the asymp-
totic waveguide problem can be applied to simplify the
Hertzian potential problem. In fact, instead of looking for
7,, m,, we may search for #,* or =~ defined by

m =3(m xjm,)
m" =§(m,Fjm)=7Fjm".

(39)

The self-dual potentials are solutions to the following
equations:

(v2+h?*)a=0,

n-va; xjt-va =0,

(40)
(41)

It is important to note that in the boundary condition (41)
the two potentials are not coupled as in (15). So, the
self-dual problem is reduced to solving one scalar function
only.

From (40), (41) it can be seen that the two self-dual
solutions are simply related. In fact, we could define

Wli:('”f)*

on S

onC.

(42)

or they are complex conjugates of each other. So, there is
no need to calculate both potentials.

The functional (32) can be written for one scalar func-
tion only, giving the stationary value for the solutions of
(40), (41)

J(V fP£ju-v f*X v f)as @)
SN ds

These two functionals give the same stationary value A2 for
the two signs corresponding to the potentials f=x .

T(f)=

B. Circular Cylindrical Waveguide

As a simple application of the theory we consider the
circular cylindrical structure with radius a much larger
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Fig. 3. The circular cylindrical waveguide.

than the wavelength (Fig. 3). Looking for self-dual solu-
tions, we start from (40), (41). A finite solution of (40) is

7= (hp) (A= e/ +B=e i), (44)

Substituting this in (41), we obtain two possible sets of
solutions. Either we have :

haJ!(ha)Fjn J (ha)=0and B*=0 (45)

or

haJ.(ha)=jn J,(ha)=0and A™ =0. (46)

The transcendental equation in (45) can also be written
haJ,,(ha)=0. (47)

h=0 leads to a static mode, with #, satisfying the Laplace
equation and because the fields vanish on the boundaries,
the fields vanish everywhere and this case is noninteresting,
Hence, only the zeros of J,,, and J,_, give the possible
values for the eigenvalues: h" =p, ., /a, if p is the zero for
the Bessel function.

The general solutions with the eigenvalue p,, /a can be
written as

Ty = ATy Pp/a)e 0P
+B, Jm+1(PmP/a)eiJ(m+l)¢- (48)

Because the most general solution is a linear combination
of these potentials, it is seen that in general, there is a
fourfold degeneracy in the solution of the asymptotic fields
of a circular cylindrical guide. For m=0 this is reduced to
two, because the terms in (48) are multiples of each other
as J_, = —J,. The electric field is written from (19) in the
form

Eg,, = —j(I=jux1)- v, (49)

if I denotes the unit dyadic. Substituting (48) in (49) we
have

Eg,=*j(p,/a)(u, %ju,)
T Pap/a)e M (AZe™Im —BEeIm?)
==j(p,/a)(u,xju,)
-Jm(pmp/d)(A,f,e TImé _ gre=imé)

(50)

This field is obviously circularly polarized, as predicted.
The basic asymptotic mode is obtained for the lowest
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eigenvalue A, which is #=2.4 /a for m=0. From (50) it is
seen that as a linear combination of the self-dual solutions
we may write for the lowest mode

Ey, =AvJy(2.405p /a)

(51)

with a unit vector v transversal to u. The field is then
polarized in one constant direction everywhere in the wave-
guide, as was also obtained in [6].

For the general case, m#0, the field can be written,
instead of four self-dual fields, with four fields with con-
stant linear polarizations

E,, = [C,,lluxef'”‘i’ +Clu e M
im —jm PmP
+Clu,e/™ + Chu e ™ ‘1’] J, ( T) . (52)

V. ATTENUATION IN WAVEGUIDES

The attenuation is obtained from the next asymptotic
equations. Writing the n =2 Helmbholtz equations

My )
(v2=28) () =282 ) (53)
and the n=1 boundary conditions
nv —tVv T2 )y n/Z, 0 (7’1)
(t-V n'V)(mz) ZJBI( 0 Z./qf\"M
(54)

we are able to solve for the unknown coefficient §8,. The
formula can be written in abstract form writing f for the
potential pair (7, m), whence (53) reads Lf, =28, f, and
(54) Bf, =2 jB,Mf,. Here, L, B, and M are matrix opera-
tors. From (26) the following Green’s formula can be
derived:

if the inner products (-,-), (-,-), are integrals over the
surface S and the boundary curve C, respectively. Thus,
the operator pair L, B is self adjoint with respect to these
inner products.

Substituting ff for f and f, for g and noting that Lf*=0
and Bf}*=0, we can solve for §,

poip, T M),
2N A)

Pl(n/Z)mf+(Z,/n)mi[] dC
J(m [ +|m, ) dS

=jB: (56)
If the basic problem 8,, =, m, is solved, from (56) the next
coefficient of B8 can be calculated.

The attenuation coefficient is defined as a=—=
—~Im(fB,)/k? It is seen at once that if Z_ is pure imagin-
ary, we have a=0, or the waveguide is lossless to the
approximation. 8,, then, presents just a correction to the
propagation coefficient. For the basic mode in the cylindri-
cal guide (56) can be tested, and an expression equivalent
to the equation (34) in [1] is obtained.

The potential coefficients =,, m, are obtained by solving
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the deterministic problem (53), (54). The result is not
unique, because a multiple of =,, m, can be added to the
solution. To obtain uniqueness, the solution f, can be
required to be orthogonal to the solution f, or (f;, f;)=0
without any loss of generality, because the final solution to
the potential problem (the asymptotic series) can be nor-
malized.

A. Self-Dual Modes

For the self-dual modes, the formula (56) is simplified a
little. From (39) we have m;” = +jx,~ and applying (42)

fim ' dc
2w dS

For the self-dual modes the attenuation factors are the
same. This is not valid for the general anisotropic boundary,
however.

From (57) it is easy to see that the imaginary part of 8,
is minimum for Z =mu, if the imaginary part of Z is zero.
But if Im(Z,)#0, then the minimum is attained at Re(Z,)
=0. For good conductors, Re(Z,)=Im(Z ) and the
minimum is seen to exist at Re(Z,)=n/v2.

For the self-dual modes, some conclusions about the
potentials can be made if the waveguide is lossless. Namely,
if Z_is imaginary, the operator jM is real and because L
and B are real operators, from (53), (54) we see that 7}, m3
is a solution with the same B, as =,, m,. In this case, there
is the following dependence between the self-dual solu-

tions:
(58)

Z
B, =—jB ( 'Zl + "n_s) (57)

7, =(m, )* mz":(m;)*

B. Anisotropic Boundary

We consider boundary conditions more general than (4),
i.e., conditions of the form

nXE=Z-H

(59)
where Z, is the surface impedance dyadic. It is a two-
dimensional dyadic, i.e., orthogonal to n: n-Z,=Z_-n=0
and can be written in the form

Z=Zu+7Z twu+Z uw+Z uu.

Denoting detZ =2,72,.—Z2,,Z,,,
as follows:

(60)

we may write (59) also

E\ 1{Z, (detz,)/m ( E,
(n%)*—ﬁl(—n z ) Miy

Z (61)

For Hertzian potentials this takes on the form

(kn-v —Bt-v)(w):_jk?(

Bt-v kn-7 ) \m Z

1

L aazyn) (5
ZZ[ (det ZS)/" m
(62)
which obviously generalizes the condition (5).
The basic asymptotic quantities, B,, =, m,, are not

affected by the anisotropy, but the formula for ,, (56), is
changed because the operator M is changed. Hence, the
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Fig. 4. Helical corrugations on the waveguide surface.

more general form of (56) can be written as follows:

B,

1
) 72— 2Z, m¥m,+ Z_mFm, + — det Z|\m 2)dC
:_1,31 gs("” 1l 271 My MM Sy
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If Z, =2, this reduces to (57). If Z, and Z, are real, e.g.,
lossy tuned corrugations, it is not difficult to find out that

,if Z,>2Z,, the smallest attenuation is obtained for a=/2,

which corresponds to the conventional transversal corruga-
tions. The maximum attenuation is obtained for a=0, or
longitudinal corrugations.

For transverse corrugations, (66) reads

+2dc
. . n Z, §6|771|

F= By o + 22 | 67
2 ’ﬁ‘(Zn n )2f|w1+|2dS (67)

and it is seen that to have a small aitenuation, the corruga-
tions must be tuned to give Z,, the largest possible value.

For the self-dual modes satisfying (39) and (42) we have
instead of (57)

Jlm"[* dC
2flmtPds
(64)

From this we see that unless Z,, +Z,, =0, the two self-
dual modes have B," #B, . For a reciprocal surface
material we always have a symmetric dyadic Z_, whence
only for a diagonal Z, (i.e., with eigenvectors along u and
t), the propagation coefficients have the same value. This is
satisfied for some boundary materials, e.g., for a corru-
gated surface material. More general surface impedance
dyadics can be realized with a layer of magnetized ferrite
material [7].

From (63) we can speculate how to obtain a small
attenuation. Obviously, the parameter Z,, should be large
with respect to n. Denoting v/Z,,=p, a small parameter,
the impedance parameters Z,. and Z,, should be of the
order ((1) and Z,, of the order O( p), in order that the
attenuation factor be 0( p). Interpreted from the equation
(59), this implies the two conditions: ¢-H and ¢-E must
both be of the order 0( p), or they must be small. This is
well approximated by the corrugated surface.

. —JB detZ
B2—: Z l 17+ n SiJ(th+Zzt):|
tt

C. Corrugated Waveguide

We consider the general corrugated waveguide with cor-
rugations directed helically with an angle « to the axis u.
(See Fig. 4.) In the local frame, we can write

Z, =Zuu, +2Zusu,

i _ cosasina) u
("2)_(—Sinacosa (t) (65)

Because det Z, =Z,Z,, (64) can be written in the form
fﬁ|771+ *ac
2f|atrds
(66)

" +2,Z,xj9(Z,— Z,)sin2a
7(Z, sin® a+ Z,cos? a)

Bzi:—jﬁl

Zu S(m+|m)*) ds

(63)

V1. CoNcLUSsION

Asymptotic analysis was applied to the problem of wave
propagation in large waveguides with impedance
boundaries. The purpose was to expand the classical wave-
guide analysis in this direction and no claim of complete-
ness in solving problems arising in practical oversized
waveguides was made. To proceed in this field, one has to
take into account the nondeterministic defects of the wave-
guide boundary, for example.
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